可再生能源发电的快速发展为我国能源系统低碳转型注入新的活力。由于可再生电力的波动性和间歇性,影响电力系统安全稳定运行。在目前尚无大规模、低成本、长周期的先进储能技术可用状况下,迫切需要煤电深度灵活调峰技术,以满足可再生能源大规模接入电网的需求。加快开发和应用燃煤锅炉深度灵活调峰技术、超低负荷稳燃技术、高效灵活电-热双供技术等,实现锅炉深度调峰与快速变负荷,为可再生能源发电高比例接入电网保驾护航。特别是 2030 年以后,煤炭逐步向基础能源和保障能源过渡。随着可再生能源的深入发展,煤电深度调峰逐步向高灵活性和全负荷范围调峰的方向发展,应利用变革技术建造新型调峰发电机组来保障可再生能源的接入,从而在高度灵活智能的前提下,实现清洁高效经济运行,支撑新能源系统的构建及“双碳”目标的实现。
2
工业过程高效燃烧技术
清洁高效燃烧技术是实现提升能源利用效率、有效降低碳排放强度的有效手段。针对冶金、建材等典型高耗能、高排放工业过程的节煤、降碳、减排等重大需求,突破气化-燃烧、富氧/全氧燃烧、多污染物协同脱除等关键技术,完成典型流程的工业示范,实现高效低碳燃烧利用,从而推动工业用煤领域燃烧技术变革,节能增效。同时,推动冶金、建材等高耗能行业与煤化工的结合,充分发挥煤炭直接和间接转化技术优势,促使高耗能和高耗煤行业技术变革。例如,从焦炭高炉炼铁转型到还原冶炼工艺,可大幅度减少 CO2 排放。
3
工业过程/流程低碳耦合关键技术
充分发挥煤炭的能源属性和物质属性,重点突破高耗煤/高耗能行业间、流程/过程间的物质和能量的耦合瓶颈,形成煤电-可再生发电、煤化-冶金、煤化-石化、多过程联产等系列高效低碳耦合利用技术,完成典型工业示范;推动煤炭由燃料属性向燃料与原料属性耦合转变,实现系统综合能效提升和 CO2 减排。其中,燃煤发电与可再生能源耦合发电方面,推动发展煤与生物质耦合发电,可实现生物质发电效率提高 15—20 个百分点,达到超超临界发电水平;而燃煤发电与太阳热耦合发电,可以充分利用低品位的太阳热来减排 CO2。煤化-冶金耦合方面,开发甲醇-钢厂煤气制乙酸乙酯技术,可充分利用钢铁厂的尾气(主要是焦炉煤气、转炉煤气),通过提纯形成合成气原料,实现冶金尾气原料化,具有显著的降碳、固碳及增效效益。煤化-发电方面,推动煤化工与燃煤发电耦合,充分发挥煤炭的燃料属性和原料属性,实现电力和化学品联合灵活生产,既满足灵活调峰,又满足大幅度减排 CO2 的需求。此外,可通过甲醇石脑油耦合制烯烃技术、铁锰矿定向还原焙烧技术等实现煤化-石化、多过程联产等多过程低碳耦合。